TriEye, Denso team to evaluate CMOS-based SWIR camera

June 12, 2020
The evaluation of TriEye's SWIR camera by Denso will demonstrate the product’s ability to deliver mission-critical image data under a wide range of scenarios.
(Credit: TriEye)
1 5ee3efeac17ea

Semiconductor startup TriEye (Tel Aviv, Israel), whose shortwave-infrared (SWIR) sensing technology enhances visibility in adverse weather and night time conditions, has launched its Sparrow CMOS-based SWIR camera. The company has partnered with global automotive supplier Denso (Kariya, Japan) to evaluate the camera.

The evaluation of Sparrow by Denso will demonstrate the product’s ability to deliver mission-critical image data under a wide range of scenarios, made possible by leveraging the physical properties of the SWIR spectrum. The sensor is particularly effective in low-visibility conditions such as identifying black ice, dark-clothed pedestrians, and cyclists, all under low-light or other common low visibility conditionsdetection scenarios that are paramount for the automotive industry.  

TriEye aims to solve the low-visibility challenge on the roads by making SWIR cameras affordable and accessible for the global mass market. The release of the Sparrow camera marks a major milestone towards that goal. The company is expected to launch the first samples of its Raven CMOS-based SWIR HD camera later in 2020. 

TriEye’s SWIR camera can be integrated as a standard visible camera and can reuse existing visible image AI algorithms, which saves the effort of recollecting and annotating millions of miles. The camera will allow advanced driver-assistance systems (ADAS) and autonomous vehicles (AVs) to achieve unprecedented vision capabilities to save lives on the roads. 

Indium gallium arsenide (InGaAs)-based SWIR cameras have not been used for mass-market applications due to their high costs and large form factor. Based on a decade of nanophotonics research, TriEye enables the fabrication of a CMOS-based HD SWIR sensor at scale, which is small in size and said to be 1000X lower in cost than current technology. 

In addition to the evaluation by TriEye's automotive customers, the company has already delivered samples of the Sparrow to its nonautomotive customers. 

This achievement follows other major milestones announced by TriEye in the past year, including a $19 million Series A funding round led by Intel Capital, with the participation of Porsche Ventures and Grove Ventures, as well as a collaboration with Porsche AG. 

For more information, please visit trieye.tech and denso.com

Source: TriEye press release – June 11, 2020

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!