CMOS camera analysis could help prevent construction industry injuries

Aug. 10, 2021
Simulated falls recorded by the CMOS camera were then analyzed using image identification technology to determine the motion, speed, and acceleration of selected points in sequences of frames.

Fall arrest systems used in the construction industry come in a variety of designs and are subject to rigorous performance testing. To investigate the effectiveness of different system designs, the Professional Association Institute for Occupational Safety (Berufsgenossenschaftliches Institut für Arbeitssicherheit; Sankt Augustin, Germany) recently conducted a study using anthropomorphic dummies that revealed potential failings in several safety harnesses during a simulated fall arrest. These dangers concerned mainly shoulder straps slipping, along with sternal and dorsal attachments causing injury. The behavior of the harnesses during fall arrest depends significantly on their construction, especially on the arrangement of straps and attachment buckles.

Falls of the anthropomorphic dummy and the behavior of the harnesses during fall arrest were recorded using a Mikrotron (Unterschleissheim, Germany) Cube 7 MotionBLITZ EoSens camera set to 1024 × 1024 pixel resolution at 1410 fps. Its Dynamic Range Adjustment feature allowed the researchers to dynamically adjust the camera’s CMOS sensor for higher contrast scenes. Recorded material was then analyzed using TemaMotion Starter II image identification technology to determine the motion, speed, and acceleration of selected points in sequences of frames.

Analysis of fall arrest recordings revealed instances of the sternal attachment impacting the dummy’s face. Pressure was exerted on the dummy’s neck and head as a result of the dorsal D-ring sliding upward along the shoulder straps. In some models of harnesses, the steel buckle traveled along the shoulder straps causing the straps to tighten around the dummy’s neck and head, and potentially injuring the face area.

The majority of safety harness tests are conducted following the methods stipulated in international safety standards calling for the use of a rigid torso dummy, instead of an anthropomorphic dummy which more closely simulates human response. The researchers at Berufsgenossenschaftliches Institut für Arbeitssicherheit believe that the rigid torso dummy is insufficient for a comprehensive evaluation of harness performance and their safety parameters. Considering the significance of the results obtained, the researchers expect to continue testing for other dummy positions, such as head down, head inclined sideways, and positions causing rotation, using the Mikrotron camera. The study of such cases will allow the development of better criteria for assessing safety harnesses and improving their overall design.

Source: Mikrotron

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!