Monolithic optics reduce SWaP for hyperspectral imager

July 10, 2017
Engineers have reduced the size, weight, and power requirements for a selectable hyperspectral airborne remote-sensing kit coherent hyperspectral-imaging system.

By integrating a patented solid-optical-block spectrometer with a high-quantum-efficiency CMOS focal-plane-array (FPA)-based sensor, engineers at Corning Advanced Optics (Keene, NH) have reduced the size, weight, and power (SWaP) requirements for the company's model 410 microHSI selectable hyperspectral airborne remote-sensing kit (SHARK) coherent hyperspectral-imaging (HSI) system. Designed specifically for integration with highly compact unmanned aerial vehicles (UAVs), the 410 SHARK weighs only 1.6 lbs, occupies less than 5.4 × 3.5 × 2.8 in.3, consumes less than 19 W at 12 VDC, and is roughly half the price of comparable HSI systems.

Compactness is achieved in the low-optical-aberration Offner relay spectrometer that integrates a high-efficiency convex diffraction grating (manufactured using a diamond-turning process) into a solid optical block.

Aligned by design and manufacture and without air spacings and discrete optical components, the optical-block configuration significantly reduces optical path length and increases mechanical and thermal robustness, as well as improves transmission throughput for high signal-to-noise ratio and high spatial resolution. The 1936 × 1216 pixel FPA (5.86 μm pixel pitch) of the 410 SHARK yields a 28.6° field of view and 2 nm (maximum) spectral resolution across a 400–1000 nm wavelength range. Reference: R. Holasek et al., Proc. SPIE, 10213, 1021304 (May 22, 2017); doi:10.1117/12.2267856.

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!