Signal-amplifying amorphous silicon photodiode has a 2.25 THz gain-bandwidth product

Oct. 12, 2017
Amorphous silicon, with its disorder and thus abundant localized states, would be a good active material for a cycling excitation process-based low-light detector.

While avalanche photodiodes (APDs), which achieve high sensitivity through impact ionization, are the standard for semiconductor-based low-light photodetectors, they suffer from some drawbacks, including high excess noise, a limited gain-bandwidth product, and high operation voltages of about 20 to 200 V. Scientists at the University of California, San Diego (La Jolla, CA) have come up with an alternative based on the phonon (sound quanta)-based cycling excitation process (CEP, first reported by the same group in 2015) for amplification—devices using CEP have a quantum noise limit potentially 30 times lower than those based on impact ionization. Knowing that CEP was based on Auger excitation of localized states, the researchers had an epiphany: amorphous silicon (Si), with its disorder and thus abundant localized states, would be a good active material for a CEP-based low-light detector.

And indeed it is. Introducing 5% carbon into the amorphous Si, the researchers fabricated a detector with a 30-nm-thick CEP layer sandwiched between a top transparent contact and a Si substrate. With a 30-μm-diameter active area, the CEP-based detector has a photocurrent at zero bias of 17 nA and an extrapolated dark current of about 0.5 pA. Characterized with light at a 405 nm wavelength, the device has a gain of 2000 for a 4 V bias, with the frequency response having a 3 dB cutoff at about 1.5 GHz. The excess noise factor (ENF) for the CEP-based device was no more than about 2 for gains up to the maximum of on the order of 2000, in contrast to an ENF of up to 40 under the same conditions for an APD. The gain-bandwidth product of the new carbon-doped detector is about 2.25 THz. Reference: L. Yan et al., Appl. Phys. Lett. (2017);http://dx.doi.org/10.1063/1.5001170.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!