Self-tracking PV technology concentrates light via fluidic coupling

Sept. 30, 2014
Glint Photonics has developed a new optical technology for low-cost solar concentrating photovoltaic (CPV) systems using an embedded liquid layer to passively adjust the optical properties of the concentrator to track the position of the sun.

Glint Photonics (Burlingame, CA) has developed a new optical technology for low-cost solar concentrating photovoltaic (CPV) systems using an embedded liquid layer to passively adjust the optical properties of the concentrator to track the position of the sun. The technology is designed to provide high-concentration panels with a wide effective acceptance angle, eliminating the need for precision mechanical alignment and tracking typically used in CPV systems and thereby making the approach much less expensive. The result is a low-cost flat panel that can be mounted like a conventional silicon module but deliver up to twice the electrical energy.

The optical light-collection film is a laminated structure that contains an array of millimeter-scale molded lenslets above a slab light guide. Sunlight is focused by the lenslets to form an array of focal points that move across the bottom face of the slab as the angle of incident light changes. The slab guide is clad on the top by a thin low-index polymer and on the bottom by fluids that provide the passive-tracking functionality. At each focal spot, the fluid cladding provides a local increase in refractive index that allows the focused light to enter the guide after reflecting off the underlying facets. To accomplish this index shift, the fluid cladding is composed of two thin liquid layers: a low-refractive-index fluid on the slab face with a high-refractive-index liquid below it. Local heating at the focal points alters the interface tension between the two fluids via the thermocapillary effect, causing the high-index liquid at each focal point to come into contact with the slab. Because these contact regions are dynamically formed, they follow movement of the focal points as the angle of incident light changes, providing passive solar tracking. Light from all of the lenslets is aggregated into the common guide and can be extracted at the guide edge at concentrations up to 1000X. Contact Peter Kozodoy at[email protected].

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!