Indium tin oxide coating increases Schottky-barrier photodetector sensitivity

Nov. 1, 1997
Ilesanmi Adesida and colleagues at the University of Illinois (Urbana, IL), with collaborators at Bell Communications Research (Red Bank, NJ), have enhanced the barrier heights to reduce dark current in vertical Schottky-barrier photodetectors and increased device responsivity by applying indium tin oxide (ITO) coatings to reduce optical reflection. The epitaxially grown, lattice-matched structures consist of a 25-nm-thick iron-doped indium phosphide (Fe:InP) buffer layer, a 300-nm-thick n+-sili

Indium tin oxide coating increases Schottky-barrier photodetector sensitivity

Ilesanmi Adesida and colleagues at the University of Illinois (Urbana, IL), with collaborators at Bell Communications Research (Red Bank, NJ), have enhanced the barrier heights to reduce dark current in vertical Schottky-barrier photodetectors and increased device responsivity by applying indium tin oxide (ITO) coatings to reduce optical reflection. The epitaxially grown, lattice-matched structures consist of a 25-nm-thick iron-doped indium phosphide (Fe:InP) buffer layer, a 300-nm-thick n+-silicon-doped In¥ohmic-contact layer, a 1.0-µm-thick InGaAs absorption layer, a 50-nm-thick InGaAs/InAlAs graded layer, and a 50-nm-thick InAlAs Schottky-barrier enhancement layer, all grown on an Fe:In¥substrate.

The mesa-shaped active region of each device was defined by a citric-acid etch, then topped with a 320-nm-thick layer of ITO and a 500-nm-thick layer of silicon nitride (Si3N4). The ITO acts as an electrode and enhances the barrier; in conjunction with the Si3N4 layer, it also acts as an antireflection coating. The researchers fabricated a family of photodetectors ranging from 15 to 100 µm in diameter. Responsivities ranged between 0.55 and 0.60 A/W for 1.31-µm illumination and between 0.56 and 0.58 A/W for 1.55-µm illumination. At a wavelength of 1.55 µm, the 15-µm device displayed a 3-dB cutoff frequency of 25 GH¥with a bias voltage of 10 V. Adesida plans to fabricate a bottom-illuminated device, which he expects will increase responsivity by 2 or 3 dB.

Sponsored Recommendations

Achromatic Lenses: High-Quality Custom Optics

March 13, 2025
Ensure clarity and accuracy in your optics systems with Lacroix’s achromatic lenses. Explore how our custom solutions minimize chromatic aberration for perfect results.

Manufacturing Considerations for Tolerancing Aspheres

March 13, 2025
Understand the critical factors in manufacturing aspheres and how Lacroix Optics ensures precise tolerancing in every optical component.

Explore Our Videos: Insights into Precision Optics

March 13, 2025
Get an inside look at Lacroix Optics with our collection of informative videos showcasing our capabilities, innovations, and processes.

Optical Assemblies: Reliable and Precise Solutions

March 13, 2025
Ensure your optical system works seamlessly with Lacroix Optics' custom optical assemblies. Discover the precision and reliability we bring to every project.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!