Chemical reaction alters the colors of plasmonic prints

March 1, 2017
The technique could open the way for ultra-high-resolution images, extremely sharp displays, encrypting information, and detecting counterfeits.
Plasmonic printing produces resolutions several times greater than conventional printing methods. In plasmonic printing, colors are formed on the surfaces of tiny metallic particles when light excites their electrons to oscillate. Researchers at the Max Planck Institute for Intelligent Systems in Stuttgart have now shown how the colors of such metallic particles can be altered with hydrogen. The technique could open the way for animating ultra-high-resolution images and for developing extremely sharp displays. At the same time, it provides new approaches for encrypting information and detecting counterfeits.

Read more at: https://phys.org/news/2017-03-chemical-reaction-colours-plasmonic.html#jCp
The Laser Focus World take:

Plasmonics is a fast-growing field with many implications for photonics. This article by Stefan Maier, codirector of the Centre for Plasmonics & Metamaterials at Imperial College London, presents the underlying concepts that have been exploited in various areas of optics for decades, and are now experiencing a renaissance in the form of nanoplasmonics.

Related article:Plasmonic nanostructures concentrate light




About the Author

Conard Holton

Conard Holton has 25 years of science and technology editing and writing experience. He was formerly a staff member and consultant for government agencies such as the New York State Energy Research and Development Authority and the International Atomic Energy Agency, and engineering companies such as Bechtel. He joined Laser Focus World in 1997 as senior editor, becoming editor in chief of WDM Solutions, which he founded in 1999. In 2003 he joined Vision Systems Design as editor in chief, while continuing as contributing editor at Laser Focus World. Conard became editor in chief of Laser Focus World in August 2011, a role in which he served through August 2018. He then served as Editor at Large for Laser Focus World and Co-Chair of the Lasers & Photonics Marketplace Seminar from August 2018 through January 2022. He received his B.A. from the University of Pennsylvania, with additional studies at the Colorado School of Mines and Medill School of Journalism at Northwestern University.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!