High-quality perovskite photovoltaics can now be fabricated at room temperature

March 17, 2015
One version of the cells is semi-transparent with a 10.1% efficiency

Researchers at Brown University (Providence, RI) have developed a simple, room-temperature process for fabricating hybrid perovskite photovoltaic cells.1 The cells have a solar-to-electric power-conversion efficiency (PCE) of up to 15.2%and an average PCE of 10.1% for cells made of semi-transparent sub-100-nm-thick perovskite films.

Perovskite films are excellent light absorbers and are much cheaper to make than the silicon wafers used in standard solar cells. By last year, perovskite cells had been certified as having more than 20% efficiency. That rapid improvement in performance is promising, and researchers are racing to start using perovskite cells in commercial products.

The Brown University fabrication method involves room-temperature solvent baths to create perovskite crystals, rather than the furnaces used in conventional crystallization methods. The technique produces high-quality crystalline films with precise control over thickness across large areas, and could point the way toward mass-production of perovskite solar cells.

Two solutions

In the technique, a precursor solution is spin-coated onto a substrate and immersed in a bath of a second solvent -- all at room temperature. The result is rapid crystallization of smooth and uniform perovskite films. Thicknesses of from 20 to 700 nm can be produced. The technique could be scaled up to large roll-to-roll processing for manufacturing.

The partially transparent thinner perovskite films could be used to make photovoltaic windows.

Source: http://news.brown.edu/articles/2015/03/perovskite

REFERENCE:

1. Yuanyuan Zhou et al., Journal of Materials Chemistry A (2015); http://dx.doi.org/10.1039/C5TA00477B

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!