New photon-detection material has high detection efficiency, less jitter

Jan. 5, 2016
Molybdenum silicide superconducting nanowire single-photon detector has a jitter of 76 ps.

Researchers at the National Institute of Standards and Technology (NIST; Boulder, CO), the University of Geneva (Geneva, Switzerland), and the Jet Propulsion Laboratory (JPL), California Institute of Technology (Pasadena, CA) are creating superconducting nanowire single-photon detectors (SNSPDs) made of a new material, molybdenum silicide (MoSi), which leads to both a high system detection efficiency (87.1 ±0.5% at 1542 nm) at 0.7 K and a minimum system jitter of 76 ps -- half that of the previous record of about 150 ps.1 As a result, quantum communications can happen at a higher bit rate, with more information transmitted in the same time period.

An electron beam was used to pattern nanowires into a thin film made of MoSi.

The new detectors can also be operated with saturated internal efficiency at a temperature of 2.3 K. The new design improves on NIST’s 2011 tungsten-silicon alloy material because it can operate at higher (though still cryogenic) temperatures and at a higher electrical current. The higher temperature simplifies refrigeration, while the higher current cuts jitter in half. NIST researchers enhanced the detector’s light absorption and efficiency by embedding the chip in a cavity made of gold mirrors and layers of other unreactive materials.

The 87% efficiency of the MoSi device is almost as high as that for tungsten-silicon devices (93%) but with significantly lower jitter.

Development of next-generation sensors offering high precision is a NIST priority. NIST single-photon detectors are used in a variety of experiments around the world.

Source: NIST

REFERENCE:

1. V. B. Verma et al., Optics Express, Vol. 23, Issue 26, 2015; doi: 10.1364/OE.23.033792

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!