Princeton Instruments introduces series of emICCD cameras

July 16, 2013
The PI-MAX4 series includes the 512EM version for single-photon sensitivity; the 1024i for double-image featuring; and the 1024 x 256 for spectroscopy.

The PI-MAX4 series of emICCD cameras includes the 512EM version, which provides single-photon sensitivity; the 1024i for double-image featuring; and the 1024 × 256 for spectroscopy. Capabilities include <500 ps gating, >30 frames/s, RF modulation, and complete control via a LightField software platform with an oscilloscope-like user interface.Princeton Instruments
Acton, MA
http://www.emiccd.com

More Products

-----

PRESS RELEASE

World's First emICCD Camera Delivers Single-Photon Sensitivity and Subnanosecond Time Resolution

Princeton Instruments is pleased to announce the launch of an innovative new emICCD technology, available exclusively in their renowned PI-MAX®4 camera platform. For the first time ever, one camera combines the advantages of intensifiers (i.e., ultrashort, subnanosecond exposure times) and the benefits of EMCCDs (i.e., linear gain and high quantum efficiency) to provide single-photon sensitivity and quantitative performance for scientific imaging and spectroscopy applications.

For more than three decades, Princeton Instruments ICCD cameras have been the industry standard for time-resolved imaging and spectroscopy applications. The recently introduced PI-MAX4 series of cameras, for example, offers advanced capabilities such as <500 picosecond gating, very high repetition rates, RF modulation, and complete control via a truly revolutionary LightField® software platform with an oscilloscope-like user interface.

"Traditional intensified cameras, the workhorses of ultrashort, time-resolved applications, are limited by nonlinearity due to microchannel plate [MCP] saturation as well as an inability to distinguish single photons. Alternatively, EMCCD cameras, which have become the main tools for low-light applications, lack ultrashort [i.e., psec to µsec] gating capabilities," observes Ravi Guntupalli, Vice President of Sales and Marketing at Princeton Instruments. "However, by combining these two key technologies for the first time, we have created unique emICCDcameras that are free of the aforementioned limitations, allowing researchers in combustion, ultra-low-light chemiluminescence imaging, quantum optics, and time-resolved imaging and spectroscopy to design experiments hitherto not possible."

Explained briefly, in an emICCD camera, either a back- or front-illuminated EMCCD is fiberoptically bonded to a “latest generation” intensifier with an S20/S25, GaAs, or GaAsP photocathode for the highest light throughput. By intelligently utilizing both the intensifier (i.e., MCP) gain and the EMCCD gain, the detector provides a larger dynamic range than that of an intensifier alone. This wider linear range of operation is very useful for quantitative measurements in comparing bright and dark scenes within a single image. The same camera can be operated at the highest system gain to detect single photons, overcoming the excess noise limitations of typical “gain” systems. New emICCD cameras also feature a built-in, fully calibrated, high-precision timing generator with 10 psec time resolution for external synchronization. These high-frame-rate (>30 fps) cameras can be operated remotely via a Gigabit Ethernet (GigE) data interface.

All PI-MAX4 cameras are fully supported by Princeton Instruments’ LightField 64-bit data acquisition software platform, which has been designed “from the ground up” for scientific imaging and spectroscopy. LightField provides a visual, interactive timing-setup interface that makes even the most complex synchronization experiments a breeze. The platform remembers each PI-MAX4 user’s hardware and software configurations and tailors its own features accordingly, displaying all relevant tools via an intuitive graphical user interface.

-----

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it's free!

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!