Efficiency of PV cells on polymer film reaches 18.7%

June 11, 2011
Fabricating thin-film photovoltaic (PV) cells on flexible plastic sheets has the advantage of light weight, portability, and much easier installation when compared to the more-usual glass panels.

Dübendorf, Switzerland--Fabricating thin-film photovoltaic (PV) cells on flexible plastic sheets has the advantage of light weight, portability, and much easier installation when compared to the more-usual glass panels. However, the conversion efficiency of plastic thin-film PV panels is lower than that of glass. But scientists at Empa (the Swiss Federal Laboratories for Materials Science and Technology) have narrowed the efficiency gap between flexible plastic and rigid glass thin-film PV panels.

They have boosted the energy-conversion efficiency of flexible solar cells made of copper indium gallium (di)selenide (also known as CIGS) to a new world record of 18.7% (a significant improvement over the previous record of 17.6%, which was achieved by the same team in June 2010). The measurements were independently certified by the Fraunhofer Institute for Solar Energy Systems (Freiburg, Germany).

"The new record value for flexible CIGS solar cells of 18.7% nearly closes the 'efficiency gap' to solar cells based on polycrystalline silicon (Si) wafers or CIGS thin film cells on glass," says Ayodhya Tiwari, the project leader.

One major advantage of flexible high-performance CIGS solar cells is the potential to lower manufacturing costs through roll-to-roll processing. The new results suggest that monolithically interconnected flexible CIGS solar modules with efficiencies above 16% should be achievable with the recently developed processes and concepts.

Working closely with scientists at FLISOM (an Empa-affiliated start-up company that is scaling up and commercializing the technology), the Empa team made progress in low-temperature growth of CIGS layers grown on polymer or metal foil. The latest improvements in cell efficiency were made possible through a reduction in recombination losses by improving the structural properties of the CIGS layer and a low-temperature deposition process for growing the layers, as well as in situ doping with sodium during the final stage. With these results, polymer films have for the first time proven to be superior to metal foils as a carrier substrate for achieving highest efficiency.

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it’s free

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Electroplating 3D Printed Parts

Jan. 24, 2025
In this blog post, you'll learn about plating methods to enhance the engineering performance of resin micro 3D printed parts.

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!