Micromirrors switch fast enough for laser-directed quantum computing

Dec. 8, 2010
A laser guided by a microelectromechanical beam-steering system that aims and focuses laser light pulses onto single atoms for use in quantum computers has been demonstrated.

Durham, NC and Madison, WI--A laser guided by a microelectromechanical beam-steering system that aims and focuses laser light pulses onto single atoms for use in quantum computers has been demonstrated by collaborating researchers from Duke University and the University of Wisconsin-Madison.1

In theory, quantum computers will be able to solve very complex problems if their basic elements, called qubits, remain in a quantum-entangled state for a long enough time for the calculations to be carried out before information is lost to natural fluctuations. One of several promising approaches to quantum computing uses arrays of individual atoms suspended by electromagnetic forces. Laser pulses manipulate the internal states of the atoms that represent the qubits to carry out the calculation. However, the beams must also be focused and pointed accurately enough that light meant for one atom doesn't affect its neighbors.

The micromirrors, each with a radius of 100 µm, directed the beam to each target atom in as little as 5 µs, which is about 1,000 times faster than beam-steering mirrors developed for optical-communications switching. The pulses also correctly manipulated the quantum properties of each target atom--in this case a line of five rubidium-87 atoms--without disturbing any neighboring atoms, which were separated by 8.7 µm.

The groups plan to continue their collaboration, with future experiments targeting two-qubit gates, which are expected to be the basic building block of quantum logic, and atoms confined in larger two-dimensional arrays.

REFERENCE:

1. C. Knoernschild et al., Appl. Phys. Lett., 97, 134101 (2010); doi:10.1063/1.3494526

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it's free!

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!