Biomimetic mantis-shrimp-eye camera sees multiple colors and polarizations

Oct. 17, 2017
By mimicking the mantis shrimp, University of Illinois researchers developed a color- and polarization-sensitive camera.

By mimicking the eye of the mantis shrimp, University of Illinois (Champaign, IL) researchers have developed an ultrasensitive camera capable of sensing both color and polarization. The bioinspired or biomimetic imager can potentially improve early cancer detection and help provide a new understanding of underwater phenomena, the researchers said. The Optica paper "Bio-inspired color-polorization imager for real-time in situ imaging" is available online and at doi.org/10.1364/OPTICA.4.001263.

RELATED ARTICLE: IR polarimeter improves detection of oil spills on water

"The animal kingdom is full of creatures with much more sensitive and sophisticated eyes than our own," said Viktor Gruev, a University of Illinois professor of electrical and computer engineering and co-author of the new study. "These animals perceive natural phenomena that are invisible to humans. Polarization of lightthat is, the direction of oscillation of light as it propagates in spaceis one such example. While most of us are familiar with polarized sunglasses, which simply remove glare, many animals use polarized vision as a covert communication channel, to find food, or even to navigate by sensing polarization patterns in the sky."

The mantis shrimp, considered one of the best hunters in shallow waters, possesses one of the most sophisticated eyes in nature. Compared with human vision, which has three different types of color receptors, the mantis shrimp has 16 different types of color receptors and six polarization channels, Gruev said.

Gruev and graduate student Missael Garcia led an effort to replicate the shrimp's visual system using some basic physical concepts. "Nature has devised materials such that different colors of light penetrate at different depths," said Gruev, who also directs the Biosensors Lab at Illinois. "If we shine a blue laser and a red laser on the tip of our finger, we can only observe the red light on the other side of the finger. This is because the red light can penetrate deeper in the tissue."

"Nature has constructed the mantis shrimp eye in such a way that photosensitive elements are vertically stacked on top of each other," Gruev said. This stacking allows for absorption of shorter wavelengths, such as blue light, in the shallow photoreceptors and red light in the deeper receptors. The photoreceptors are organized "in a periodic fashion at the nanoscale that allows them to also 'see' the polarized properties of light," he said.

"The same laws of physics that apply to the mantis visual system also apply to silicon materials, the material used to build our digital cameras," Garcia said. "By stacking multiple photodiodes on top of each other in silicon, we can see color without the use of special filters. And by combining this technology with metallic nanowires, we effectively have replicated the portion of the mantis shrimp visual system that allows it to sense both color and polarization."

This unique combination of silicon photodetectors and nanomaterials allowed the Illinois research team to create a point-and-shoot color-polarization camera. The applications for such cameras are wide-ranging, from early cancer detection to monitoring changes in the environment to decoding the covert communication channels that many underwater creatures appear to exploit, the researchers said.

"By mimicking the mantis shrimp visual system, we have created a unique camera that can be used to improve the quality of our lives," Gruev said. "The notion that we can detect early formation of cancer is what is driving this research forward. The cost of this technology is less than $100, which will enable quality health care in resource-limited places around the world."

SOURCE: University of Illinois; https://news.illinois.edu/blog/view/6367/566077

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

From Life Sciences to Industry: Advancements in Optical Filters

Aug. 1, 2024
Optical filters are increasingly used in VR, advanced medical imaging, environmental monitoring, and satellite communications. This whitepaper highlights Chroma’s technical advancements...

Optical Filters for Semiconductor Inspection

Aug. 1, 2024
At Chroma Technology, we understand that the quality of your optical filters directly impacts the accuracy of your inspection processes and ultimately, the performance of your...

Optical Filters for Astronomy Applications

Aug. 1, 2024
At Chroma we manufacture the highest quality, narrow-band spectral line filters for astronomy. Our narrow passbands provide the precision and accuracy to ensure your spectral ...

Chroma is a leading manufacturer of highly precise optical filters

Aug. 1, 2024
Chroma is known for exceptional customer service and technical support. They produce durable, high-performance optical filters with a spectral range of 200-3000nm, serving diverse...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!