Overlooking the Diffraction Limit

Oct. 21, 2024

The diffraction limit sets a hard boundary on how well an optical system, such as a microscope or telescope, can resolve fine details. This limit is determined by the inherent wave properties of light and the unavoidable phenomenon of diffraction when light passes through an aperture. To get the most out of any optical system, it’s crucial to understand what the diffraction limit is, how it works, and why ignoring it can lead to disappointing results. 

The Basics of Diffraction Limit

In any optical system, from microscopes to telescopes, diffraction plays a critical role in setting a resolution ceiling. The diffraction limit is a fundamental restriction caused by the wave-like behavior of light. As light enters an optical system through an aperture, it bends and interferes with itself, producing a pattern known as an Airy disk.

Every optical aperture creates this Airy disk—a small, bright center surrounded by fainter rings of light. The radius of this disk, and thus the smallest point that light can be focused into, is given by the formula:

Ra = 1.22λ/2Na

Where:

  • Ra is the Airy disk radius
  • λ is the wavelength of the light
  • Na is the numerical aperture of the system

This radius defines the minimum spot size, a key factor in how fine an optical system can resolve detail. As the numerical aperture increases, the Airy disk’s size decreases, allowing for finer resolution. 

To read the entire article, visit Shanghai Optics

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!