65f089cd51e8e5001d7de7af Screenshot 20240312 At 12

Case Study: Objective Lens Advancements for Medical Laser Instruments

65f089cd51e8e5001d7de7af Screenshot 20240312 At 12

In a recent project, Shanghai Optics, a leading custom optics company, took on the challenge of developing objective lenses for medical laser instruments. This endeavor required meeting strict specifications, including an Effective Focal Length (EFL) of 10mm, a Numerical Aperture (NA) of 0.5, a working distance exceeding 22mm, and compatibility with laser wavelengths ranging from 350 to 850 nm. 

The client’s requirements presented several challenges, particularly the demanding 0.5 NA specification driving up costs and the inefficacy of traditional lens materials for 350-nanometer laser applications. Shanghai Optics adopted an innovative strategy after meticulously analyzing the client’s needs and challenges. Their approach not only addressed the 0.5 NA requirement but also focused on cost reduction.

Overcoming Marital Challenges

In addressing the challenges of traditional lens materials for 350-nanometer laser applications, Shanghai Optics engineers meticulously chose alternative materials to minimize absorption and improve cost efficiency. Additionally, Shanghai Optics focused on cost-effectiveness by reducing the number of optical components without sacrificing performance through design strategies such as relaxing axial color tolerances and streamlining manufacturing processes. Crucial to the project’s success was the optimization of the lens design for multiple laser wavelengths, achieved by utilizing Modulation Transfer Function (MTF) diagrams to ensure precise separation of laser spots and exceeding client expectations.

To read the entire case study, visit Shanghai Optics' website.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...