661ff807be8a5d001e9f5f3c Screenshot 20240417 At 10

Case Study: Long Working Distance Microscope Objective Lens

661ff807be8a5d001e9f5f3c Screenshot 20240417 At 10

Key Takeaways:

  • The 50X long working distance microscope objective lens offers high magnification for clear visualization in biomedical and precision testing applications. 
  • Its infinite conjugate design ensures compatibility with various microscopy systems. Specifically engineered for the near ultraviolet (NUV) band, it corrects for the 355nm wavelength, achieving 50% transmittance and excellent achromatic correction. 
  • With a numerical aperture (NA) of 0.65 and a 10mm working distance, it excels in industrial processing. The lens maintains superior performance across the field of view, meeting flat field requirements.

50X Long Working Distance Microscope Objective Lens

Introduction

This 50X infinite conjugated long working distance microscope objective is a widely used lens applicable in various fields such as biomedical, precision testing, sample observation, and more. Its high magnification capability allows for clear visualization and high-resolution observation of extremely small-sized cells, their biological structures, and the internal structures of precision materials.

Designed to meet diverse needs, this objective lens provides precise and detailed observation capabilities across different domains. The infinite conjugate design enhances flexibility, enabling compatibility with various microscopy systems and accessories to meet different experimental and observational requirements. This powerful and versatile tool serves professionals in fields such as biology research, medical diagnostics, and materials science, and contributes to advancements in scientific research and technological development.

To read the entire case study, visit Avantier’s website.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...