Courtesy of Avantier Inc
664e06b945fedf6f4e790c7a Screenshot 20240522 At 10

Off-Axis Parabolic (OAP) Mirror Design Specifications

Courtesy of Avantier Inc
664e06b945fedf6f4e790c7a Screenshot 20240522 At 10

The off-axis parabolic mirror (OAP Mirror) mirrors produce perfect focus points for collimate light beams and are widely used in advanced optical systems that for meeting increasingly stringent performance requirements. The design specifications of OAP Mirrors are key elements that significantly affect manufacturing costs and the overall performance of these systems. To standardize the design and specification process of OAP Mirrors, Avantier plans to release a series of technical resources to enhance understanding and streamline the process.

Geometry of OAP Mirror

The diagram below shows the basic geometry of the off-axis parabola mirror.

The “sag” or z-coordinate of the Standard surface is given by

where

  • RoC: parent radius of curvature at the parent vertex
  • k: conic constant, is less than -1 for hyperbolas, -1 for parabolas, between -1 and 0 for ellipses, 0 for spheres, and greater than 0 for oblate ellipsoids.
  • r: distance to the parent axis
  • Off-Axis Angle: angle between parent axis and segment 
  • Z: surface sag in parent z axis

For OAP Mirror, k=-1, the equation is reduced to:

 

Typically, the beam’s aperture, which can be either circular or square, is oriented along the Z axis. The actual size of the aperture on the optics’ surface may appear elliptical or rectangular, depending on the off-axis angle. 

For optics with large off-axis angles or apertures, opting for a non-wedge design becomes a more cost-effective solution. In this design, a tilt angle can be specified relative to the parent Z axis. 

Off-axis parabolic mirrors (OAP Mirrors) can be manufactured from various materials, including metals (using single-point diamond turning), glass, and specialized ceramics like SiC. The choice of material significantly influences the overall cost and precision. Avantier’s application engineers are on hand to assist you in selecting the most suitable material and surface quality for your specific application. 

Avantier offers a range of coating options tailored to your chosen material, including metallic coatings such as protected aluminum or dielectric coatings designed to withstand high laser damage thresholds. 

Designing optics with built-in alignment features to streamline final integration is an essential strategy. Avantier’s application engineers will guide you in defining manufacturing and metrology-friendly alignment features.

Learn More

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites