Optimizing Biomedical Raman Spectroscopy with Advanced Optical Filters

June 21, 2024

Raman spectroscopy, enhanced with advanced filters, provides real-time data on biological tissues, holding immense potential in medicine, research, and biomedical engineering. By utilizing precise configurations and carefully chosen filters, Raman spectroscopy can deliver detailed information crucial for various biomedical and bio-analytical applications. The right laser wavelength and optimal filter choice are essential and vary depending on the biological sample being analyzed.

Understanding the Basics: How Raman Spectroscopy Works

Raman spectroscopy involves illuminating a sample with a laser beam and analyzing the resulting scattered radiation. This scattered light is divided into Rayleigh scattering (at the laser wavelength) and inelastic scattered light, known as the Raman signal. The Raman signal provides valuable information about the sample, while Rayleigh scattering, with its higher intensity, is filtered out using laser blocking filters (notch, edge pass, or band pass filters).

Historically, holographic gratings and multiple dispersion stages separated Raman scattering, which was then collected by photomultipliers. Today, advanced optics like notch or edge filters eliminate unwanted Rayleigh scatter, providing a clear Raman signal.

To read the entire article, visit Shanghai Optics' website.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!