Hybrid integration enables 14 Tbit/s transmission over 160 km of optical fiber

Nov. 1, 2006
Fiber-optic “hero” experiments are alive and well: researchers at NTT (Tokyo, Japan) have transmitted data at a 14 Tbit/s rate over a single 160-km-long optical fiber.

Fiber-optic “hero” experiments are alive and well: researchers at NTT (Tokyo, Japan) have transmitted data at a 14 Tbit/s rate over a single 160-km-long optical fiber. The rate bested the previous record of about 10 Tbit/s. Rather than using existing linear amplifiers that covered two or three narrower amplification bands, requiring remultiplexing of the resulting separate signals, the researchers extended the bandwidth of an L-band amplifier so that it was 1.75 times (7 THz) larger than that of conventional amplifiers.

The experiment used carrier-suppressed return-to-zero differential-quadrature phase-shift keying. Seventy wavelengths with 100 GHz spacing were modulated at 111 Gbit/s and then multiplexed and amplified; in addition, each signal was polarization-division-multiplexed, doubling the number of channels to 140. To up the modulation speed beyond that of conventional Mach-Zehnder lithium niobate modulators, NTT developed a hybrid integration technology that combines silica-based planar-lightwave circuits with lithium niobate lightwave circuits. The company aims to construct a practical 10 Tbit/s-class large-capacity-core optical network. For contact information, see www.ntt.co.jp/sclab/contact_e.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!