Pen-shaped scanner illuminates on axis

March 6, 2000
Even as laptop computers have grown thinner and lighter, portable document scanners remain a hefty handful.

Even as laptop computers have grown thinner and lighter, portable document scanners remain a hefty handful. Awkward to use, they bump into the binding area of opened books and obstruct from view much of the document being scanned. By combining fiberoptics with carefully sized rectangular apertures, researchers at NEC Corp. (Kanagawa, Japan) have beat the size limit for such devices and built a full-color document scanner hardly larger than a ballpoint pen. The scanner operates at a resolution of 200 dots per inch (dpi) and has the potential to reach 400 dpi.

Document scanners for personal computers are based on one of four concepts: a single imaging lens, a unit-magnification lens array, a coherent fiberoptic array, or proximity sensing. Upon attempts at miniaturization, all suffer from the same problemhow to get light down to the document and back to a sensing array in a compact space and without resolution loss. All contain inherently bulky off-axis light sources. In the case of the fiberoptic array, off-axis light must pass at a high angle from fiber to fiber to reach the document, creating contrast-limiting stray light.

Although built around coherent fiberoptics, the NEC device achieves space-saving on-axis illumination by use of a photodiode array that contains a series of light-admitting rectangular apertures in each photodiode. A prototype built by the researchers contains 864 100-µm-square photodiodes spanning a 110-mm range and a coherent array made of 15-mm-diameter optical fibers that has a numerical aperture of 0.9. Because the illumination is axial, the coherent array can be fabricated with light-absorbing glass between the fibers, reducing stray light. The scanner has a width of only 13 mm.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!