Arbor Photonics obtains exclusive license for chirally coupled core fiber

Aug. 15, 2008
Optical fiber technology from the University of Michigan will enable more average peak power for fiber lasers than current fiber.

Arbor Photonics (Ann Arbor, MI) has signed an exclusive license agreement for chirally coupled core optical fiber with the University of Michigan, Ann Arbor. The agreement grants Arbor Photonics rights to commercialize the fiber and devices enabled by the innovative design for lasers, optical amplifiers, and laser beam delivery.

The chirally coupled core concept, dubbed "CCC" or "3C" fiber, is a revolutionary type of optical fiber that uses an internal structure to produce single-spatial-mode output from very large-mode-area fibers, invented by professor Almantas Galvanauskas at the University of Michigan Center for Ultrafast Optical Science. The technology provides the basis for a breakthrough in laser performance that will be exploited by Arbor Photonics to produce high-power, short pulsed, singlemode fiber lasers bringing significant benefits to laser applications in microelectronics, solar-cell manufacturing, and defense.

According to Arbor Photonics CEO, Philip Amaya, "We believe that 3C fiber technology will enable fiber lasers with unprecedented performance in terms of average power, peak power, and brightness. Feedback from end users and OEMs in microelectronics and solar-cell manufacturing indicates that higher average power, short pulsed lasers are needed to improve manufacturing cycle time and reduce production costs. We're very excited that our first generation of 3C fiber lasers will help customers achieve this by delivering two to four times higher average power than is presently available."

Arbor Photonics is currently developing fibers and components for short pulsed fiber lasers with several times more average and peak power than is available from state of the art fiber lasers. Lab demonstrations are ongoing with 3C fibers to show the full potential of the technology.

RELATED ARTICLES:

FIBER SENSING - Chiral-fiber gratings sense the environment

New coupler technology could assist in enabling tomorrow's silicon photonics

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!