Scanning-probe setup grinds microlenses onto optical-fiber tips

Dec. 1, 2009
Sergii Yakunin and Johannes Heitz of Johannes Kepler University Linz (Linz, Austria) have developed a new way of microgrinding the tips of optical fibers to produce spherical tips with a 1 µm radius of curvature (smaller than any now commercially available), as well as axicons.

Sergii Yakunin and Johannes Heitz of Johannes Kepler University Linz (Linz, Austria) have developed a new way of microgrinding the tips of optical fibers to produce spherical tips with a 1 µm radius of curvature (smaller than any now commercially available), as well as axicons. Such microlensed fibers are well suited for handling high amounts of laser light flux for purposes ranging from photochemical etching to laser ablation.

In the grinding process (which is much simpler than techniques such as ion milling), the fiber is not rotated; instead, the fixed fiber is moved around inside a conical polishing surface. The conical polishing surface is made by pressing a series of metal pins with increasing cone angles into a polishing sheet. The fiber itself is etched to a conical shape before polishing. A homemade atomic-force-microscope (AFM) setup, along with additional software for tip-trajectory control, is used to manipulate the fiber in three translational dimensions. Both AFM and visual-microscope topography measurements showed a very accurate spherical tip shape. Microlenses with radii of 1 and 3 µm were created; the 3-µm-radius lens focused red (633 nm) light to a 340 nm focal spot that remained submicrometer in diameter up to a defocus of 6 µm. Contact Yakunin at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!