Miniature optical frequency comb for integrated photonics can be used for quantum data encryption

Jan. 15, 2018
Producing two frequencies within such a comb is the same as producing entangled photons.

Researchers at the University of Southern California (USC; Los Angeles, CA ) Viterbi School of Engineering have invented a new method to create an optical frequency comb, a tool that increases the potential applications of lasers by converting a single wavelength into multiple wavelengths, effectively creating tens to hundreds of lasers from a single laser.1 The new frequency-comb generator consists of optical microcavities covered with monomolecular layers of highly nonlinear small organic molecules. The new device requires 1000x less power to operate than a conventional frequency-comb generator, allowing for mobile applications.

The first applications of frequency combs focused on detecting trace amounts of chemicals and high-precision timekeeping; however, recently, a new application of great significance to society has emerged: quantum cryptography.

While many strategies are being pursued to enable quantum cryptography, one of the leading contenders is based on photon entanglement. Entangled pairs of photons must be created at exactly the same time with exactly the same properties, which is done naturally by a frequency comb. The first step in forming the frequency comb occurs when the primary laser generates a secondary pair of wavelengths; however, because of energy conservation, one wavelength must have higher energy and one wavelength must have lower energy. Additionally, the energies must sum to be exactly equal to the primary laser, and the two new wavelengths must appear at exactly the same time. Thus, frequency comb generators can be viewed as entangled photon generators.

While reducing the size and power requirements of the frequency comb were key technical hurdles, there are many integration and manufacturing challenges remaining before quantum cryptography on portable platforms will be commonplace.

Source: https://viterbischool.usc.edu/news/2018/01/pulses-light-encrypt-data-protect-security-cryptocurrencies/

REFERENCE:

1. Xiaoqin Shen et al., Science Advances (2018); doi: 10.1126/sciadv.aao4507.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!