Imec and UGent spinoff Sentea to commercialize fiber-optic sensing solutions

Sept. 11, 2018
Sentea will develop and market advanced silicon-photonics-based fiber-optic sensing solutions for structural health monitoring.

Ghent University (UGent; Ghent, Belgium) and imec (Leuven, Belgium) today announced the incorporation of Sentea, a spin-off from their world leading Photonics Research Group. An initial 1.6 million Euro in funding was raised from Fidimec, Finindus, PMV and QBIC II and the founders. Sentea will develop and market advanced silicon-photonics-based fiber-optic sensing solutions. These will be used to continuously monitor engineering structures for signs of damages that over time could lead to catastrophic failure, as well as to control industrial installations to maximize their efficiency.

According to the new market research report from MarketsandMarkets, the structural health monitoring market is estimated to grow from USD 1.48 billion in 2018 to USD 3.38 billion by 2023, at a CAGR of 17.93% between 2018 and 2023. The major factors driving the growth of the structural health monitoring market include concerns about catastrophic failure due to aging infrastructures in the developed countries, stringent government regulations pertaining to the sustainability of structures, and the superior benefits of structural health monitoring.

"Integrating all optical functions into a single silicon photonics component will allow us to make highly accurate, small and robust fiber optic sensor interrogators. Silicon photonics is also very cost-effective, which makes fiber optic sensing affordable for a wide range of new markets and applications and facilitates universal and continues monitoring of structures," said Karsten Verhaegen, CEO of Sentea. "Key potential customers have expressed great interest in Sentea's solutions, stating that better infrastructure lifetime management and process control makes them more competitive in their respective markets."

To develop its first products and bring them to market, the company raised 1.6 million Euro in funding from a consortium of investors including Fidimec, Finindus, PMV and QBIC II.

Structural Health Monitoring (SHM) is a process in which engineering structures are continuously monitored throughout their lifetime for early signs of damages that over time could lead to catastrophic failure. By detecting any damage early on, and repairing or replacing the damaged part, catastrophic failure and the resulting downtime and huge repair costs can be avoided. A range of SHM solutions, such as fiber optic sensing, have found their way into engineering structures such as wind turbines, nuclear power plants, ships, trains, airplanes, buildings, bridges, dams, tunnels, heavy machinery, blast furnaces and so on.

Sentea aspires to be a market leader in advanced fiber-optic solutions for structural health and process monitoring. The company was incorporated in 2018 as a spin-off of the Photonics Research Group of Ghent University and imec to commercialize more than a decade of research in silicon photonics and fiber-optic sensing. Benefitting from the advantages of silicon photonics, Sentea will develop and market fiber optic sensing interrogators that offer high accuracy, small size and advanced functionality, positioned for deployment in a wide range of applications and markets, hence enabling continuous monitoring of structural integrity to become the standard. Sentea is privately held by a consortium of investors including Fidimec, Finindus, PMV and QBIC II.

SOURCE: imec; https://www.imec-int.com/en/articles/ugent-and-imec-launch-fiber-optic-sensing-spin-off-sentea

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Advanced Laser Processing Techniques for Surgical Robot End Effector Manufacturing

Oct. 23, 2024
For the cutting-edge manufacturers of minimally invasive surgical robots, precision laser processing is the cornerstone for crafting optimal end effectors. Learn about advancements...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!