MICROSCOPY: Mouse Schwann cells reveal cause of neurofibromatosis

March 1, 2008
Sometimes the simplest solutions can achieve surprisingly significant results. Using an inverted Olympus culture microscope, researchers from the University of Michigan (UM; Ann Arbor) were able to track down the cells responsible for neurofibromatosis type 1 (NF1), an incurable condition of the peripheral nervous system that afflicts one in 3500 Americans.

Sometimes the simplest solutions can achieve surprisingly significant results. Using an inverted Olympus culture microscope, researchers from the University of Michigan (UM; Ann Arbor) were able to track down the cells responsible for neurofibromatosis type 1 (NF1), an incurable condition of the peripheral nervous system that afflicts one in 3500 Americans. Though most cases are mild, the disease can lead to disfigurement, learning disabilities, blindness, skeletal abnormalities, loss of limbs and, occasionally, lethal malignancies. NF1 causes benign tumors to grow around peripheral nerves; in 3% to 5% of the cases, the tumors later become malignant (neurofibromas).

Researchers have long wondered which cell types trigger formation of neurofibromas: Schwann cells, which form the protective myelin sheath around nerve fibers, or stem cells that give rise to Schwann cells during fetal development? The answer has implications for the development of drug therapies.

In a study published in the Feb. 5 Cancer Cell, UM scientists Nancy Joseph and Jack Mosher tried to determine if deleting the NF1 gene causes neural crest stem cells to persist beyond birth and form neurofibromas in mice. They studied seven mouse models that had various mutations of the NF1 gene and other genes known to contribute to the formation of neurofibromas and malignant peripheral nerve sheath tumors.

“The surprise was that we didn’t see neural crest stem cells persist after birth in regions where the tumors formed, even with the NF1 deletions,” Joseph says. “That argues against a stem-cell origin.”

This study, when combined with related work done in Yuan Zhu’s lab in the UM Medical School (also published in Cancer Cell, Feb. 5), led the researchers to conclude that Schwann cells, not neural crest stem cells, proliferate to form the tumors. Zhu and his colleagues were able to show that a specific type of Schwann cell, called a non-myelinating Schwann cell, is the likely source of potentially cancerous neurofibromas.

“One of the difficulties of NF1 is that it is hard to predict when tumors will grow and which tumors will turn malignant. You don’t want to use a very aggressive therapy because some tumors will never grow,” Zhu says. “With this insight into the initiation of the disease, we can develop strategies to prevent the tumors from forming.”

About the Author

Kathy Kincade | Contributing Editor

Kathy Kincade is the founding editor of BioOptics World and a veteran reporter on optical technologies for biomedicine. She also served as the editor-in-chief of DrBicuspid.com, a web portal for dental professionals.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!