PHOTODYNAMIC THERAPY/ONCOLOGY: Photon-counting nanowires promise precision photodynamic cancer therapy

March 1, 2013
As described in a study published by Optics Express, a team of researchers from Scotland, Canada, and The Netherlands have reached a milestone in optical monitoring for medical applications.

As described in a study published by Optics Express, a team of researchers from Scotland, Canada, and The Netherlands have reached a milestone in optical monitoring for medical applications.1 The milestone involves the excited state of the oxygen molecule, commonly referred to as singlet oxygen, which is a crucial intermediate step in many biological and physiological processes.

Singlet oxygen is, for instance, generated by a laser-activated photosensitizer drug during photodynamic therapy (PDT), a growing application area for photonic technologies in medicine. In the treatment of cancer, singlet oxygen produces tumor cell death. But accurate dosimetry for PDT is extremely important—and highly challenging. According to the researchers, the detection of singlet oxygen luminescence (occurring at 1270 nm wavelength) provides a direct route towards PDT dosimetry.

A low-noise superconducting-nanowire single-photon detector records the time-resolved luminescence signature of singlet oxygen luminescence at 1270 nm (red trace). The signal was verified by chemical quenching (blue trace). The photosensitizer cuvette as it appears during the experiment is shown in the inset.

To read singlet oxygen luminescence with unprecedented signal-to-noise ratio, the team used advanced infrared single-photon detection technology.2 The superconducting nanowire detector is fiber-coupled and housed in a practical closed-cycle refrigerator. According to Nathan Gemmell, the PhD research student who performed the experiments at Heriot-Watt University (Edinburgh, Scotland), "the exceptional performance of our superconducting detector allowed us to make measurements for the first time using an optical fiber to pick up the light from the decay of the excited oxygen molecules."

According to Professor Brian Wilson of the Ontario Cancer Institute (Toronto, Canada), "the ability to perform these measurements is a marked step forward for this field." He explains that the optical fiber offers a tremendous practical advantage that in the future will allow dose monitoring to be performed locally within tumors. This means the possibility of accurate "on-line" control during treatment to ensure the highest tumor kill without damaging normal, healthy tissues.

1. N. R. Gemmell et al., Opt. Exp., 21, 4, 5005–5013 (2013).

2. C. M. Natarajan et al., Supercond. Sci. Technol., 25, 063001 (2012); doi:10.1088/0953-2048/25/6/063001.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!