Hamamatsu IR CCD image sensor for Raman spectroscopy

March 21, 2011
The S11500-1007 back-thinned CCD for Raman spectroscopy from Hamamatsu Photonics offers a spectral response range from 200 to 1100 nm, and features 40% quantum efficiency at 1000 nm.

The S11500-1007 back-thinned CCD for Raman spectroscopy from Hamamatsu Photonics (Bridgewater, NJ) offers a spectral response range from 200 to 1100 nm, and features 40% quantum efficiency at 1000 nm. Proprietary laser processing technology forms a MEMS structure on the back side of the CCD, making it sensitive in the NIR region for detecting long-wavelength Raman emissions. Binning allows linear image sensor operation.

More Products

-----

PRESS RELEASE

Hamamatsu introduces a new IR-enhanced CCD image sensor for Raman spectroscopy

Hamamatsu Corporation has introduced the S11500-1007 back-thinned CCD for Raman spectroscopy. This CCD has a wide spectral response range from 200 nm to 1100 nm, and features 40% quantum efficiency at 1000 nm. Its enhanced sensitivity in the NIR region, which is particularly beneficial for detecting long-wavelength Raman emissions, is made possible by applying Hamamatsu's unique laser processing technology to form a MEMS structure on the back side of the CCD.

The S11500-1007 has 1024 (H) x 122 (V) pixels with a pixel size of 24 x 24 µm. With binning, the CCD can be operated as a linear image sensor. The binning operation ensures even higher signal-to-noise ratio and faster signal processing speed compared to methods that use an external circuit to add signals digitally. The S11500-1007 comes in a 24-pin ceramic DIP package with a quartz glass window. It can be used in conjunction with Hamamatsu's C7040 multichannel detector head (sold separately).

-----

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it's free!

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!