New method targets specific brain cells for Parkinson's treatment

April 17, 2009
APRIL 17, 2009--A Stanford University team has proven able to precisely control individual components of the neurocircuit implicated in Parkinson's disease. In doing so, the researchers have identified a specific group of cells as direct targets of deep brain stimulation (DBS), a Parkinson's treatment. The key to the discovery is an NSF-funded technology called optogenetics, which combines photodynamic proteins and genetic approaches.

APRIL 17, 2009--Using a technology called optogenetics, a Stanford University(Stanford, CA) team has proven able to precisely control individual components of the neurological circuit implicated in Parkinson's disease. In doing so, the researchers have identified a specific group of cells as direct targets of deep brain stimulation (DBS), a Parkinson's treatment.

Optogenetics, whose development was funded by the National Science Foundation (NSF), uses light-activated proteins, originally isolated from bacteria, in combination with genetic approaches. The technique is a vast improvement over previous methods because it allows researchers to precisely stimulate neurons and measure the effect of treatment simultaneously in animals with Parkinson's-like symptoms.

Karl Deisseroth, in Stanford's bioengineering department led the research, which is described in the April 17 issue of Science. The team found they could reduce disease symptoms by preferentially activating neurons that link to the subthalamic nucleus region of the brain. First, these specific cells were treated in a way that made them sensitive to stimulation by blue light, then the team implanted an optical fiber in the brain.

When researchers rapidly flashed blue light inside the animals' brains the disease symptoms improved. In contrast, treating with slower flashes of light actually made the symptoms worse, and targeting other kinds of cells had no effect at all, indicating both proper cell type and stimulation frequency are crucial components of effective treatment. Flashing blue light on portions of the same neurons found closer to the outer surface of the brain had an effect similar to treatment deep within the brain, raising the possibility that researchers may be able to develop treatments that are less invasive than current options.

Approved as a medical treatment in 1997, DBS remains controversial because it doesn't work on all patients. Used to treat Parkinson's disease, depression and movement disorders, DBS involves surgical implantation of a brain pacemaker, which sends electrical impulses into the brain. In the past, researchers have been unable to understand the effective mechanism of DBS because the electrical signal emitted by DBS devices interferes with the ability to observe brain activity.

Explains Deisseroth, "The brain is an electrical device, but it is a very complicated device. Think of it as an orchestra without sections: all of the types of instruments, or cells, are mixed together. Treatments like DBS are unrefined, in that they stimulate all of the cells or instruments. The optogenetic approach allows us to control stimulation of specific cells in the brain on the appropriate timescale, much like a conductor directing specific sections of an orchestra at the appropriate time."

Production of new therapies is always a long-term goal, but for now Deisseroth and his group are focused on mapping disease circuits and understanding brain function. "We need to understand the players before we can develop effective treatment strategies," he stated.

For further information see the Deisseroth Lab page on Stanford's site. And, see a discussion of optogenetics on Wikipedia.

Posted by Barbara G. Goode, [email protected], for BioOptics World.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!