Pixtronix micro-shutter MEMS display consumes much less power

Jan. 1, 2011
Compared to conventional thin-film-transistor liquid-crystal (TFT LCD) or active-matrix organic light-emitting diode (AMOLED) displays, a new digital micro-shutter (DMS) display from Pixtronix (Andover, MA) consumes one-quarter of the power while delivering equivalent image quality.

Compared to conventional thin-film-transistor liquid-crystal (TFT LCD) or active-matrix organic light-emitting diode (AMOLED) displays, a new digital micro-shutter (DMS) display from Pixtronix (Andover, MA) consumes one-quarter of the power while delivering equivalent image quality.

Using standard TFT LCD manufacturing equipment, processes, and materials, a microelectromechanical systems (MEMS) shutter is built on top of an active backplane and a simple aperture plate replaces the color filter. Essentially, the DMS technology is made of four key elements: a digital micro-shutter (laterally translating) element at the heart of each pixel that uses a patented zipping actuator; the use of field-sequential color with color-change frequencies greater than 1 kHz to avoid flicker or color breakup; an optical architecture with a light-recycling LED backlight that allows an 11.5% aperture-ratio display to transmit 60% of the light to the viewer (10 times the output of liquid-crystal displays); and a digital-backplane circuit. Pixtronix has announced partnerships with both Hitachi Displays (Japan) and Chimei Innolux (Taiwan) and has developed 2.5 in. QVGA display prototypes that can run 60 Hz videos, achieve a 135% NTSC color gamut, have a 170° viewing angle and 24 bit color, and consume less than 50 mW of backlight power. Contact Mark Halfman at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!