Multicore optical fibers could be next-gen PON solution

Jan. 1, 2012
The number of optical fibers needed for access networks using passive optical network (PON) architectures is increasing demand for high-density fiber cables. An interesting solution to this congestion could be multicore fibers from OFS Laboratories.

The number of optical fibers needed for access networks using passive optical network (PON) architectures is increasing demand for high-density fiber cables. An interesting solution to this congestion could be multicore fibers from OFS Laboratories (Somerset, NJ). With an outer-glass cladding diameter of 130 μm (slightly larger than conventional 125-μm-cladding-diameter communications fiber), a fiber containing seven individual cores has successfully transmitted seven upstream 1310 nm and seven downstream 1490 nm signals at 2.5 Gbit/s, each over distances of 11.3 km.

Designed for singlemode operation, the fiber has seven 8-μm-diameter fiber cores arranged in a 38 μm core-to-core pitch hexagonal array. The 130 μm clad fiber is acrylate-coated to a final outside diameter of 250 μm. Attenuation for the center core is 0.39/0.30 dB/km at 1310/1490 nm, and average attenuation for the six outer cores is 0.41/0.53 dB/km at 1310/1490 nm. Maximum crosstalk—an extremely important parameter for data transmission—is less than -38/-24 dB at 1310/1490 nm, more than adequate to meet PON requirements. To couple the multicore fiber to seven individual fibers, a special tapered multicore-fiber connector was developed by tapering and fusing the fibers to a dimension that matches the multicore fiber structure, achieving average splice loss values of 0.10 dB, comparable to conventional singlecore fibers. Contact Benyuan Zhu at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!