Holmium-doped glass ceramics enhance silicon solar-cell efficiency

Feb. 1, 2009
Solar cells fabricated from silicon can benefit from a photon upconversion (UC) process in which two or more low-energy photons are converted to a higher-energy photon.

Solar cells fabricated from silicon can benefit from a photon upconversion (UC) process in which two or more low-energy photons are converted to a higher-energy photon. Because silicon has a 1.1 eV energy gap centered at 1100 nm, electron-hole pairs are created only when photons with wavelengths shorter than this value (or with energy higher than this value) are absorbed by the solar cell. By adding a UC material at the rear of a bifacial silicon solar cell that absorbs photons with wavelengths longer than 1100 nm and converts them to higher-energy photons, efficiencies of silicon solar cells can be improved.

Recognizing that even the most efficient erbium-doped materials used in UC experiments to date are not efficient enough for practical application, a researcher from the University of La Laguna (Tenerife, Spain) has successfully developed a holmium (Ho3+)-doped transparent nanostructured oxyfluoride glass-ceramic material that achieves a UC efficiency two orders of magnitude better than its precursor glass. Two- and three-photon absorption processes produce two emission bands in this UC material centered at 650 and 910 nm under infrared excitation at 1170 nm, where solar irradiation is about a factor of two more intense than in the 1550 nm absorption range of erbium-doped phosphors. This material could be used alone or in combination with existing erbium-doped materials to create higher-efficiency silicon solar cells. Contact Fernando Lahoz at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!