Orbital shaker polishes optics with beads

Feb. 7, 2000
Researchers at the Optical Sciences Center of the University of Arizona (Tucson, AZ) are exploring an alternative to conventional optical surface-polishing techniques.

Researchers at the Optical Sciences Center of the University of Arizona (Tucson, AZ) are exploring an alternative to conventional optical surface-polishing techniques. Using an orbital shaker, the new process imparts an oscillating x-y motion to a slurry comprising beads, a polishing compound, and water. One benefit is that the shape of the polishing implement sets fewer limits on the shape of the surfacefor example, it may be possible to polish the inner surface of a hypersphere that cannot be polished conventionally due to the difficulty of inserting and driving a polishing tool.

The beads, which basically roll across the surface of the substrate to be ground or polished, can have several geometries, including spherical, irregular, or planar shapes. They also can be made from a variety of materials, with specifics depending on the optics material. For 25-mm-diameter, fused-silica samples, the researchers report the process produced average peak-to-valley nonuniformity (mostly power) on the order of 0.1 µm/day, with a material removal rate of 1.4 µm/day. The typical surface roughness was 3.5 nm after three days. Subsurface damage was removed in approximately 3.5 days without generating additional damage. Contact José Sasián at [email protected].

About the Author

Neil Savage | Associate Editor

Neil Savage was an associate editor for Laser Focus World from 1998 through 2000.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!