Los Angeles, CA--MIT recently announced development of a cell-phone-based eye test. Now, a lensless microscope developed by University of California, Los Angeles (UCLA) researcher Aydogan Ozcan is being adapted to cell phones with cameras and will be tested this summer in Africa.
Medical images can already be transmitted over cell phones, but this device takes that capability a step further and adds the microscope image-gathering capability directly in the cell phone itself. "Cell phones present a tremendous opportunity in Global healthcare," remarked Ozcan, an assistant professor of electrical engineering at the UCLA Henry Samueli School of Engineering and Applied Science and a researcher at UCLA's California NanoSystems Institute. "We can leverage the fact that eighty percent of the world's population lives in areas covered by cell phone networks to bridge the gaps left by a lack of health care infrastructure in developing countries."
Images are captured through a process called diffraction, or shadow-based, imaging. An ordinary light-emitting diode (LED) from the top illuminates the sample, and the detector array already installed in cell phone cameras captures the image, recording the patterns created by the shadows resulting from the LED light scattering off of the cells in the sample. Because cells are semi-transparent, enough information is obtained from this type of imaging to detect sub-cellular elements, and to produce holographic images. By using an inexpensive LED light instead of a laser as typically required for holographic imaging, the size and cost are further reduced.
The cell phone microscope is also easy to use, and versatile. Samples (blood smears or saliva) are loaded into single-use chips that easily slide into the side of the microscope. Because the microscope uses the entire detector array to capture an image and has a relatively large aperture, it has a wide imaging field-of-view. Samples do not need to be precisely aligned for images to be captured, and the chance of debris clogging the light source is lessened. Alternate uses of the technology include testing water quality in the field following a disaster like a hurricane or earthquake.
Field tests of the cell phone microscope will begin in Africa this summer using funds received from the three major awards. In early May a proposal of Ozcan's was selected by the Bill & Melinda Gates Foundation for a $100,000 Grand Challenges Exploration Grant; in mid May he was selected as a National Geographic Emerging Explorer, for which he will receive $10,000; and in late May he received $400,000 for a CAREER award from the NSF.
SOURCE:ScienceDaily; www.sciencedaily.com/releases/2010/06/100630101043.htm
--Posted by Gail Overton; [email protected]; www.laserfocusworld.com