Compression minimizes thermal lensing in disk laser

Nov. 15, 1999
Diode-pumped solid-state lasers operating at TEM00 are limited by degradation of beam quality induced by pump-induced thermal lensing. This was the driving force behind the development of the disk laser, in which heat is conducted one-dimensionally through the back disk face.

Diode-pumped solid-state lasers operating at TEM00 are limited by degradation of beam quality induced by pump-induced thermal lensing. This was the driving force behind the development of the disk laser, in which heat is conducted one-dimensionally through the back disk face. But there are transverse thermal gradients even in disk lasers, and the gain crystal is susceptible to deformation. By clamping a disk laser between a thick sapphire window and a copper heat sink, researchers at the University of Toronto (Toronto, Ontario, Canada) and the University of Rochester (Rochester, NY) have successfully minimized thermal lensing through compression.

Applied pressure can, in theory, exactly cancel forces generated by pump-induced thermal expansion. The researchers fabricated a 1.3-µm-emitting Nd:YVO4 (vanadate) laser having a 5 x 5 x 0.4-mm crystal and applied a pressure of just less than 700 MPa, pumping the laser with a 1.5-mm-diameter, fiber-coupled diode-laser array. The disk laser reached 19 W of TEM00 output power (M2 of 1.3)--limited by the pump, not by thermal lensing. An additional benefit is an increased thermal fracture limit. Using this technique, the researchers believe disk lasers can be scaled to greater than 100 W of TEM00 output.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!