Imager sees femtosecond-scale birefringence

Dec. 6, 1999
The ultrafast laser is a scientific tool unlike any other.

The ultrafast laser is a scientific tool unlike any other. When focused, terawatt-level pulses produce large intrinsic electric and magnetic fields that accelerate ions. Also, the femtosecond pulse durations can provide snapshots of chemical reactions. Although technological uses of the ultrafast laser are already being discovered, they will take decades to explore--just as with many of the greatest inventions. Part of understanding just what femtosecond pulses can do comes from developing the right techniques for measuring their effects.

Researchers at Hamamatsu Photonics (Hamakita-City, Japan) have demonstrated a device that produces a femtosecond-resolution series of imagesakin to a movieshowing areas of instantaneous birefringence induced by a focused ultrafast laser pulse in air. When the individual frames are summed, the result is a spatial representation of a light cone that reveals filaments of high birefringence in a distribution very unlike what might be expected near a focus. Such information is important not only to high-field physics in laser plasma interactions but also to inertial-confinement fusion and will undoubtedly be important in the future to ultrafast-laser-based industrial processing.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!