Laser processes could have utility in reworking CFRP aircraft parts

Nov. 30, 2016
The goal of a new joint project is to develop a reliable process for thin-walled and complex CFRP components.

To more efficiently rework aircraft components made of carbon-fiber reinforced plastics (CFRPs), Laser Zentrum Hannover (LZH; Hannover, Germany) has started a joint research project, dubbed ReWork, together with project partners INVENT (Braunschweig, Germany), OWITA (Lemgo, Germany), and Precitec Optronik (Neu-Isenburg, Germany). The goal of the project is to develop a reliable process for thin-walled and complex CFRP components.

Today, many aircraft components are made of lightweight CFRP, which has low weight and high stability. However, processing this material is still difficult. The aircraft industry requires a reliable solution to eliminate production- and operation-related defects in a faster and more cost-efficient way.

Laser processes offer promising approaches to eliminating defective areas by custom-fit patches, as carbon fiber tissue can be contact-processed without force and wear. Moreover, a laser's high geometric resolution makes it possible to scarf the surface precisely and to insert custom-fit replacement patches. During patch repair, the defective areas are removed layer by layer using a laser, and then replaced by a custom-fit patch.

An innovative system consisting of a laser, scanner, short-coherence interferometry system, and control software determines the individual process parameters according to the shape of the component. The short-coherence interferometry system measures the depth spatially with high resolution, ensuring precise layer-by-layer removal. In that way, surface deformations because of local increases in thickness, which occur frequently during mechanical processing, can be avoided.

Repair preparation of a CFRP aircraft component through layer-by-layer laser removal of the damaged material areas.

Apart from the proper system technology, the LZH Production and Systems Department's Composites Group focuses on further development of the laser process. One challenge during the laser-based surface post-treatment of CFRP aircraft components is their thin-walled and complex shape that requires individually adapted laser parameters.

CFRP typically has a spatially inhomogeneous thermal conduction--therefore, to achieve a constant surface quality, LZH experts are inventing a sophisticated process strategy and also considering the geometric scalability of the process parameter. The new technology could also be usable for 2D and 3D components, ideally with the possibility for automation.

The ReWork project (which stands for "Reliable reworking on thin-walled, curved CFRP surfaces using photonic systems and piezo-assisted quality control") is being sponsored by the German Federal Ministry of Economics and Energy (BMWi; Berlin, Germany) for a duration of three years.

For more information, please visit www.lzh.de.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!