Advancing laser manufacturing tools for common apps

April 2, 2013
General Electric's laser technologies are being used more in mainstream manufacturing and applications.

Niskayuna, NY - General Electric scientists and engineers are developing next generation laser technologies that are rapidly becoming mainstream on the manufacturing floor. Current and future generations of the manufacturing workforce will be wielding new high-tech laser "tools" that enable them to work faster, more efficiently, and with even higher precision.

GE's work with lasers dates back more than 50 years. Just two years after the laser was invented in 1960, Robert Hall, a physicist in GE's Niskayuna lab, demonstrated GE's first big breakthrough in lasers, the invention of the semiconductor diode laser. Many of the laser applications in people's daily lives stem from Dr. Hall's invention. TV remote controls, price code scanners in stores and laser printers are all examples of laser diodes.

Since then, General Electric scientists using laser technology have been making significant contributions to advanced manufacturing applications. GE has pioneered the use of lasers in manufacturing, ranging from laser hole drilling in aircraft blades for cooling to the first use of lasers for surface treatment of blades for better strength.

Recently GE laser scientists at GE Global Research in Shanghai built a unique laser deposition machine that is capable of efficiently building difficult-to-work-with materials like titanium into parts as large as 1 meter tall. This additive manufacturing technique is being developed to form the leading edge of GE's jet engine fan blades, and GE is evaluating a range of business applications that involve similar complex components.

Lasers are also used to assemble intricate components for a range of applications including filaments for lighting products, electrical generator components, X-ray imaging assemblies and most recently, GE's new Durathon Battery. GE researchers have also developed new techniques in laser scribing to interconnect cells in a solar module.

"As manufacturing becomes more advanced, we're beginning to see laser technologies in manufacturing move from specialty applications to common tools used by manufacturing workers on the plant floor," said Hongqiang Chen, who leads new developments for GE in laser technology. The global environment for manufacturing is becoming ever more competitive. With product cycle times getting shorter and labor costs rising in developing world, the premium today is on technology to be competitive.

____

(Image via Shutterstock)

About the Author

Industrial Laser Solutions Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editors Note: Industrial Laser Solutions has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!