Extreme laser micromarking application for nuclear research

April 15, 2013
Potomac Photonics completes project for U. Michigan supporting research on how reactors affect different types of metal alloys.

Lanham, MD - Potomac Photonics recently completed a precision laser micromarking project for the University of Michigan that helps support research on how extreme conditions in nuclear power reactors affect different types of metal alloys.

In order to keep track of the 100 samples of each of eight different types of alloys that will be placed in a high flux nuclear reactor, each was assigned a unique three-digit code. This code had a maximum height of 250 microns and was to be laser marked on parts that were only 3 mm in diameter and 250 microns thick. These markings will allow researchers to identify each sample and effectively trace what conditions and experiments it was exposed to.

After exposure, the mechanical properties of the samples were measured by shear punch and hardness indentation. Thus, the surfaces of the samples need to be free of any defects. The structure and chemistry of the material will be measured by electron microscopy and atom probe tomography.

Potomac Photonics designed and built a special fixture capable of holding the miniature samples so the samples could be marked quickly in precise locations. In addition, the process was capable of marking eight different types of material and was developed so that each of the markings could be read at a minimal magnification level of 15X.

Micromarking technology is becoming more prevalent in a wide array of applications, including serialization of microdevices, covert identification, and counterfeit detection. In determining the appropriate laser solution, the critical factors to consider are part size, material, and mark size requirements. Potomac has a broad range of micromarking technology with the capability to mark almost any material with features as small as 1 micron.

____

Image via Shutterstock

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!