Oxford, MA - IPG Photonics Corp. is announcing a wide portfolio of new products at SPIE Photonics West 2014, including:
1) A new ECO family of kW class Ytterbium fiber lasers with a record wall-plug efficiency exceeding 40% and an estimated operation time between service intervention of over 5 years under normal operating times and conditions.
2) A new MEGA Pulse line of nanosecond fiber lasers with energy per pulse up to 100 mJ and an average power up to 5 kW.
3) A unique family of powerful single-mode green fiber lasers providing up to 500 W average power in CW and QCW modes with a wall-plug efficiency above 15%.
4) A broad range of high power visible fiber lasers with a wavelength selection of green to red.
5) Highly efficient and cost effective industrial grade UV fiber lasers in both 355 nm and 266 nm, operating in pulsed or CW modes.
6) New families of industrial pico and femtosecond fiber lasers with a high energy per pulse and average power for different wavelengths.
7) Various versions of pulsed pure fiber and hybrid fiber-to-the-crystal lasers for the MIR spectrum range of 2 micron up to 4.5 micron, including the first practical femtosecond laser source in 2400-2500 nm spectral range based on Cr:ZnS polycrystal elements.
“We are pleased to introduce an amazing portfolio of new lasers for 2014,” said Dr. Valentin Gapontsev, CEO of IPG Photonics. “The lasers cover a broad segment of the optical spectrum, including near and mid-infrared, visible and ultraviolet wavelengths. We are unveiling a group of products that provide a multitude of new solutions to customers, all of which are designed with industry-leading product performance, reliability and cost of investment and ownership. Our expanded selection of lasers allows new and existing customers to derive significant benefits, while increasing the available markets for IPG lasers, including semiconductors, LED, solar, displays, processing of thin films, entertainment, 3D cinema, 3D printing and many other exciting applications.”
Visit IPG Photonics at Booth #1714.