Fraunhofer ILT-led group wins award for ultrashort laser pulses

May 9, 2012
A group of German researchers led by the Fraunhofer Institute for Laser Technology (ILT) have received the 2012 Stifterverband's Science Award for their development of an ultrashort-pulse laser platform that can scale up to several hundred watts.

Aachen, Germany -- A group of German researchers led by the Fraunhofer Institute for Laser Technology (ILT) have received the 2012 Stifterverband's Science Award for their development of a laser platform to scale up the output of ultrashort laser pulses, up to several hundred watts.

Ultrashort laser pulses have gained favor for extremely precise and gentle processing of highly sensitive materials; reducing the pulse duration enables both more precision and reduces heat in the material being processed. As an example, in laser-processing glass, ultrashort pulse lasers can be used to cut narrow speaker ports for smartphone displays.

With the goal to improve the power output of ultrashort-pulse lasers, a collection of partners from science and industry -- Fraunhofer ILT, RWTH Aachen University, the Max Planck Institute for Quantum Optics MPQ, Jenoptik, EdgeWave, and Amphos (the last two being ILT spin-offs) -- developed a new laser platform, with EdgeWave's INNOSLAB technology at its core. Four mirrors surround a slab of laser crystal plate; a pump jet enters from two opposite sides and the ultrashort laser pulses are repeatedly deflected to keep them passing along the slab to build up power. The group says they can increase mean laser output of ultrashort pulse beam sources up to several hundred watts; higher power translates to higher production volumes.

Two joint projects from 2008-2011 centered on developing this new beam source: the PIKOFLAT project, supported by the Federal Ministry for Education and Research BMBF, to structure pressure tools and embossing dies and reduce processing times; a result of this project has been producing embossing rollers for creating fine artificial leather surfaces in automobiles. The KORONA project with Fraunhofer, Max Planck, and RWTH Aachen aimed to develop a compact beam source with extremely short-wavelength light.

About the Author

Industrial Laser Solutions Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editors Note: Industrial Laser Solutions has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!