Laser chemical doping system introduced

June 16, 2010
Stuttgart, Germany – At LASYS I renewed the acquaintance of Berthold Richerzhagen, CEO of Synova S.A., who I had first met when he introduced his laser water jet system for hole drilling at the Laser Munich show years ago. I had spotted this system as an innovation that could find a solid niche in industrial laser material processing. It took a few years – new technology innovations usually do – but Synova has had recent successes that have established the laser water jet as a viable processing tool.

Stuttgart, Germany – At LASYS I renewed the acquaintance of Berthold Richerzhagen, CEO of Synova S.A., who I had first met when he introduced his laser water jet system for hole drilling at the Laser Munich show years ago. I had spotted this system as an innovation that could find a solid niche in industrial laser material processing. It took a few years – new technology innovations usually do – but Synova has had recent successes that have established the laser water jet as a viable processing tool.

The company’s newest technology, patented by the Fraunhofer Institute for Solar Energy System and Synova, is a laser chemical doping system used to increase the efficiency of solar cells by locality diffusing dopant underneath the front contacts, the so-called emitters. The laser beam grooves the passivation layers, and a chemical jet, through which the laser beam is guided (the original system concept), simultaneously introduces local doping at the surface of the silicon wafers. In this manner, thin selective emitters can be produced with a laser-based industrial process.

A manually loaded laser chemical doping system is now available that offers increases in efficiency to 20.4% in a fast and simple process for selective emitter formation. The AR layer opening and groove doping are accomplished in one step.

The process is compatible for P-type back-side doping. Doping is possible before and after SiNx deposition.

Other advantages are reduced contact resistance and the elimination of separate etch, diffusion, and anneal steps. In addition, selective emitters are sufficiently doped for screen printing and electroplating. Line widths are greatly reduced (down to 20 micron) in combination with Ni plating.

As the technology evolves, other steps such as seeding can be added.

Interested parties are encouraged to contact Synova.

– David A. Belforte

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!