Funding to improve QA in additive manufacturing of turbine components

Aug. 2, 2019
Researchers have been awarded over $1 million in funding towards development of a quality assurance method for additive manufacturing of gas turbine components.
206246 Web 5d4476b42caae

The U.S. Department of Energy (Washington, DC), through its University Turbine Systems Research program, has awarded researchers at the University of Pittsburgh's Swanson School of Engineering (Pittsburgh, PA) with $802,400 to find an effective quality assurance method for additive manufacturing (also known as 3D printing) of gas turbine components.

The three-year project has received additional support from the University of Pittsburgh ($200,600), resulting in a total grant of $1,003,000. 

Xiayun (Sharon) Zhao, Ph.D., assistant professor of mechanical engineering and materials science at the University of Pittsburgh, will lead the research, working with Albert To, associate professor of mechanical engineering and materials science at the University of Pittsburgh, and Richard W. Neu, professor in the Georgia Institute of Technology's School of Mechanical Engineering (Atlanta, GA). The research team will use machine learning to develop a cost-effective method for rapidly evaluating, either in-process or offline, the hot gas path turbine components (HGPTCs) that are created with laser powder-bed fusion (LPBF) technology, which can produce complex metal components faster and at lower cost. 

"...because there's a possibility that the components will have porous defects and be prone to detrimental thermomechanical fatigue, it's critical to have a good quality assurance method before putting them to use," explains Zhao. "The quality assurance framework we are developing will immensely reduce the cost of testing and quality control and enhance confidence in adopting the LPBF process to fabricate demanding HGPTCs." 

For more information, please visit engineering.pitt.edu.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!