Resonant frequency doubling of few-frequency fiber laser is path to high power output

Dec. 10, 2020
Sinusoidal phase modulation creates a few-frequency laser at 1064 nm; frequency doubling produces a near-30 W output with conversion efficiency above 80%.

Researchers from the Shanghai Institute of Optics and Fine Mechanics (SIOM) of the Chinese Academy of Sciences have proposed and tested a new approach for further power scaling of frequency-doubled fiber lasers. In their experiment, resonant frequency doubling of a periodically phase modulated continuous-wave (CW) single-frequency fiber laser was used to achieve a near-30 W output at a 532 nm wavelength with a maximum conversion efficiency above 80%.

To obtain a stable and reliable high-power visible laser, one solution is to use the fiber laser and an external resonantly enhanced cavity with a lithium triborate crystal to achieve high-power second-harmonic generation (SHG). Single-frequency fundamental lasers are required in external-cavity SHG for efficient laser injection and resonant enhancement. However, the output power of single-frequency fiber lasers is limited by stimulated Brillouin scattering (SBS). Phase modulation is an elegant approach for SBS suppression, achieved by expanding the linewidth and reducing spectral power density in a highly controllable way. However, after phase modulation, the laser output is no longer single-frequency.

The researchers use a periodically phase-modulated fundamental laser and resonant-cavity SHG to solve this problem. In the experiment, simple sine-wave phase modulation is applied to a fiber laser with a 1064 nm wavelength, resulting in a few-frequency fundamental laser. By adjusting the modulation frequency to match the free spectral range of the frequency-doubling cavity, resonant enhancement was achieved after cavity locking. Sinusoidal modulation is applied in the experiments for simplicity, but any periodical phase modulation is feasible, say the researchers, including the widely used pseudorandom binary sequence (PRBS) modulation. As phase modulation is commonly used in high-power narrow-linewidth fiber amplifiers for SBS suppression, resonant frequency doubling of phase-modulation-generated few-frequency fiber lasers is an interesting approach for increasing the output power of visible fiber lasers. Reference: X. Zeng et al., Opt. Lett. (2020); https://doi.org/10.1364/ol.401348.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!