Acetylene-filled hollow-fiber mid-IR laser is simple and robust

April 13, 2016
Scientists have unveiled a new mid-IR laser consisting of a silica hollow fiber filled with acetylene gas and pumped with a laser diode.

Types of mid-infrared (mid-IR) lasers are proliferating, with quantum-cascade lasers (QCLs), lasers based on chalcogenide-glass-based gain materials, and the old standby, optical parametric oscillators, among the various sorts. All lasers have their own advantages and disadvantages, so it's never a bad thing to see a new type of laser enter the fray. Scientists at the University of Bath (Bath, England) have unveiled a new mid-IR laser consisting of a silica hollow fiber filled with acetylene gas and pumped with a laser diode. Advantages of the laser—which can lase at a number of transitions between 3.1 and 3.2 μm—include overall simplicity and robustness, and either continuous-wave (CW) or synchronously pumped pulsed emission.

The fiber, which is capped at each end with a small transparent gas cell, has attenuations of 0.11 and 0.10 dB/m at the 1.53 μm pump wavelength and the 3.1–3.2 μm lasing region, respectively. The low loss of the fiber allows the use of a low gas pressure of about 0.3 mBar to produce a high gain per pass. For pulsed operation, the pump laser diode is pulsed at precisely the recirculating frequency of the fiber cavity, which ensures the pump pulses coincide with the recirculating laser pulse. For CW pumping (which produces a CW output), two closely spaced lines were seen. Pump coupling efficiency was 80%—the slope efficiency for CW output was 6.7% (measuring only one of the two bidirectional laser outputs), while for pulsed operation it was 8.8%. Reference: M. R. A. Hassan et al., Optica (2016); http://dx.doi.org/10.1364/optica.3.000218.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!