Deep-well structures in mid-IR QCLs improve efficiency

Jan. 1, 2011
The active regions of quantum-cascade lasers (QCLs) are made of a superlattice of quantum wells (QWs) and barrier layers.

The active regions of quantum-cascade lasers (QCLs) are made of a superlattice of quantum wells (QWs) and barrier layers. In conventional QCLs, the barriers all have the same alloy composition. For QCLs emitting continuous-wave (CW) in the 4.5 to 5.0 μm range, this results in thermally activated electron leakage from the upper laser level to the continuum, and low maximum wall-plug-efficiency values of around 12% at room temperature—short of the theoretical 28%. Researchers at the University of Wisconsin (Madison, WI), Lehigh University (Bethlehem, PA), and the Naval Research Laboratory (Washington, DC) say that this problem can be corrected by using metal-organic chemical vapor deposition to grow QWs and barriers that vary in composition.

The researchers fabricated 4.8-μm-emitting indium-phosphide-based QCLs using the deep (highly strained) well approach, using tall barriers in and around the active region for strain compensation. In addition, the conduction-band edges of the injector and extractor regions were tapered. The characteristic temperature coefficient T0 for the threshold current density Jth was boosted from 143 K for conventional QCLs to 253 K over the 20°–90°C temperature range. The design should allow single-facet room-temperature CW wall-plug efficiencies of up to 22%. Contact Dan Botez at [email protected].

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!