KMLabs commercially introduces direct diode pumped Ti:sapphire ultrafast laser

Nov. 9, 2017
After years of development, KMLabs has commercially introduced the first titanium:sapphire (Ti:sapphire) ultrafast laser oscillator directly pumped with blue-emitting laser diodes.
Content Dam Lfw Print Articles 2017 11 1711lfw Nb F5

After years of development, KMLabs (Boulder, CO) has commercially introduced the first titanium sapphire (Ti:sapphire) ultrafast laser oscillator directly pumped with blue-emitting laser diodes. Conventionally, Ti:sapphire lasers have been pumped with 532 nm (green) emitting frequency-doubled neodymium:YAG (Nd:YAG) lasers, or, more recently, smaller frequency-doubled vanadate lasers. Using direct-diode pumping instead greatly reduces the cost of the Ti:sapphire laser oscillator system. In fact, KMLabs has found that it is now possible to pump a Ti:sapphire laser with a single inexpensive 4 W blue laser diode.

The new diode-pumped Ti:sapphire laser, which KMLabs calls the Stryde Blue, is, according to the company, a "fully engineered and integrated commercial source based on a single rugged optomechanical platform, and eliminates the need for costly frequency-doubled vanadate pump lasers." KMLabs says the Stryde Blue is pumped by a single integrated laser diode, produces sub-15-fs pulses with a beam quality (M2) of typically better than 1.2; a 150 mW average power and 2 nJ pulse energy at a 78 MHz repetition rate; demonstrates a long-term stability of better than 0.5% root mean squared (RMS) over a time span of >500 hours; has computer-controlled tuning of its center wavelength and spectral bandwidth; and is well suited for standalone experiments, seeding of ultrafast laser amplifiers, or teaching labs. Applications include amplifier seeding, materials research, femtochemistry, spectroscopy, terahertz generation, ultrafast imaging, two-photon polymerization, and pump-probe experiments. Reference: https://goo.gl/vYXdV3.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!