Ridge-waveguide laser diode produces 2.2 W at 1060 nm with a circular beam

Jan. 23, 2017
A high-brightness ridge-waveguide (RW) continuous-wave (CW) laser diode emitting 2.2 W of light at a 1060 nm wavelength into a circular beam profile has been demonstrated.

A high-brightness ridge-waveguide (RW) continuous-wave (CW) laser diode emitting 2.2 W of light at a 1060 nm wavelength into a circular beam profile has been demonstrated by researchers from Technical University of Berlin (Berlin, Germany), King Abdul-Aziz-University (Jeddah, Saudi Arabia), and Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (Berlin, Germany): the beam quality (m2) was between 1.4 and 1.9 across the whole operating-current range for the RW laser. A broad-area (BA) version of the laser delivered 4.2 W of multimode output. Cavity lengths were a few millimeters; both lasers had a divergence angle of less than 10°. The low divergence, low astigmatism, and circular beam shape of these lasers make them suitable for simple and low-cost fiber-coupling.

With these results, the so-called high-brightness vertical broad-area edge-emitting (HiBBEE) laser structure, which was recently patented by two of the researchers, was experimentally demonstrated for the first time. The HiBBEE structure includes a waveguide consisting of four indium gallium arsenide (InGaAs) quantum wells separated by gallium arsenide phosphide (GaAsP) barriers. Cladding, contact layers, and electrodes complete the configuration. Although the geometry allows for several vertical laser modes, their contrasting confinement factors and optical losses lead to mode selection. Potential uses for these lasers include medical laser therapy, frequency conversion, and spectroscopy. Reference: Md. Jarez Miah et al., Opt. Express, 24, 26, 30514–30522 (2016); http://dx.doi.org/10.1364/OE.24.030514.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Electroplating 3D Printed Parts

Jan. 24, 2025
In this blog post, you'll learn about plating methods to enhance the engineering performance of resin micro 3D printed parts.

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!