Laser Materials Processing: Pulsed CO2 laser increases ablation rates for improved glass processing

June 10, 2017
Ablation of fused silica and other glass materials can be accomplished using CO2 or ultrafast lasers.

Ablation of fused silica and other glass materials can be accomplished using CO2 or ultrafast lasers. However, the low peak power of typical Q-switched CO2 lasers (<50 W) had previously limited ablation rates to allow only minor form correction and surface treatment of optical materials. But a more-powerful Q-switched CO2 laser process being developed by researchers at the Fraunhofer Institute for Laser Technology (Fraunhofer ILT; Aachen, Germany) is changing this picture, enabling bulk glass to be converted to sophisticated, complex, and even freeform shapes in a three-step process of ablation, surface polishing, and—finally—selective laser-based form correction.1

Pulsed and powerful

Compared to conventional CO2 lasers, Fraunhofer ILT uses a 200 W average power, 40 kW peak power, m2 = 1.33, Q-switched pulsed CO2 laser with a pulse duration ≥250 ns and maximum repetition rate of 150 kHz. Because of the use of two acousto-optic modulators, laser radiation can be delivered in two modes: a Q-switched pulse (mode 1) for ablation and a modulated pulse (mode 2) for final surface correction (see figure).

Using a scanning strategy that delivers pulse power Pavg with duration tpulse and repetition rate frep with focus diameter ds across the bulk glass material at speed vs and pulse distance dx, an ablation depth of zabis achieved using mode 1 operation. Experimental calculations demonstrate material removal rates of 2.35 mm3/s, allowing fabrication of rough glass optics such as a honeycomb structure (for weight reduction) on fused silica or even freeform optics. White-light interferometry measurements of the initially ablated optical surfaces allow optimization of repetition rates and fluence values of the laser to maximize material removal.

The high roughness after the ablation process is reduced in a second laser-based process step. Using continuous-wave CO2 laser radiation, the surface is smoothed by a remelting process and the micro roughness can be reduced to <0.1 nm (see http://dx.doi.org/10.2351/1.4974905).

For the reduction of residual waviness, a third process for correction polishing is necessary using rectangular pulses and only 50 W power levels. This process limits ablation to lower material removal rates, allowing selective figuring of the glass surface in a final error-correction step called Laser Beam Figuring. By controlling the pulse duration of each laser pulse, glass material can be ablated selectively with ablation depths down to 3 nm. The lateral resolution of the ablation process is 100 μm and the vertical resolution is approximately 3 nm.

"The laser-based process chain enables the fabrication of complex-shaped optics made of fused silica with only one laser source," says Christian Weingarten at Fraunhofer ILT. "The surface quality of the fabricated optics is already sufficient for illuminating optics, but with the development of the laser-based correction polishing process, we will fabricate even higher quality illumination optics in the future."

REFERENCE

1. C. Weingarten et al., Appl. Opt., 56, 4, 777–783 (2017).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!