LASER COOLING: Laser-cooled mercury may become time standard

Oct. 1, 1996
A new mercury-based atomic clock under development at the National Institute of Standards and Technology (NIST) is expected to offer accuracy at least an order of magnitude better than the best atomic cesium standard whose ground-state hyperfine transition currently defines the second.

A new mercury-based atomic clock under development at the National Institute of Standards and Technology (NIST, Boulder, CO) is expected to offer accuracy at least an order of magnitude better than the best atomic cesium standard whose ground-state hyperfine transition currently defines the second. Using input at 257 nm from a frequency-doubled argon-ion laser and at 792 nm from a master-oscillator/power-amplifier diode laser (SDL; San Jose, CA), the NIST group generates coherent output at 194 nm using a sum-frequency process in b-barium borate. Radiation pressure cooling with the 194-nm output brings the mercury atoms nearly to rest. Because they are tightly confined electromagnetically in a linear Paul trap, the cooled atoms crystallize into a string of individual atoms. Mercury has a ground-state hyperfine transition at 40 GHz, compared to the cesium hyperfine transition at 10 GHz. Led by James Bergquist, the NIST group is now exploring the stability and accuracy of a standard based on this transition, working toward a future time standard.

The cooled mercury atoms fluoresce strongly when irradiated at 194 nm. A fast lens focuses scattered light from the atoms onto an ultraviolet imaging tube; the images can be displayed in real time or captured by computer, as was the image above.

About the Author

Kristin Lewotsky | Associate Editor (1994-1997)

Kristin Lewotsky was an associate editor for Laser Focus World from December 1994 through November 1997.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!