Inline diagnostic system measures laser weld depth

April 3, 2012
Queen’s University physicist and principal investigator James Fraser and doctoral candidate Paul Webster have solved a significant problem inherent in the use of lasers in automated industrial welding, drilling, and machining: The inability to effectively monitor the depth and quality of laser welds on the fly.

Queen’s University (Kingston, ON, Canada) physicist and principal investigator James Fraser and doctoral candidate Paul Webster have solved a significant problem inherent in the use of lasers in automated industrial welding, drilling, and machining: The inability to effectively monitor the depth and quality of laser welds on the fly. Their new inline coherent imaging (ICI) technique is a novel high-speed inline diagnostic system that can measure on-the-fly laser weld penetration depth with micron precision and microsecond speeds.

The all-optical depth measurement is made by axially combining a typically 850 nm sensing light-source beam (and the laser-machining beam along the same path and combining the resulting backscattered light from the weld pool with reference light in an interferometer. The resulting measured interference pattern is analyzed spectrally and the weld-depth data are computed from the absolute path mismatch between the two interferometer arms. Unlike triangulation approaches, ICI is able to obtain depth information from deep geometries without bulky optics. Since the detection is coherent and spectrally isolated from the welding beam, ICI unaffected by intense scatter, blackbody emissions, and momentary signal loss due to material expulsion. Queen’s University’s PARTEQ Innovations plans to commercialize the technology. Contact Stephen K. Adolph at [email protected].

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!